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Abstract— This paper describes the modeling of a biomass-based weed-crop competitiveness classification
process based on classification rules extracted from Bayesian network classifiers. Two Bayesian network classifiers
are employed, namely an unrestricted Bayesian network classifier and a näıve Bayes classifier. The BayesRule
algorithm is then used to extract a set of rules from each Bayesian network classifier. In the sequel, the class
probability estimate is used as a pruning strategy to optimize each rule set. Results concerning the performance
and adequacy of the proposed pruning strategy are presented and discussed for comparison purposes.

Resumo— Este trabalho descreve a modelagem de um processo de classificação da competitividade entre
plantas daninhas e cultura considerando a biomassa das plantas. O processo é baseado em regras extráıdas de
redes Bayesianas de classificação. Duas redes Bayesianas de classificação são empregadas, sendo uma rede de
classificação Bayesiana irrestrita e uma rede näıve Bayes. O algoritmo BayesRule é então usado para extrair
um conjunto de regras a partir de cada uma das redes. Em seguida, a estimativa da probabilidade da classe é
usada como estratégia de poda para otimizar cada conjunto de regras. Resultados referentes ao desempenho e
adequação da estratégia de poda proposta são apresentados e discutidos para fim de comparação.

1 Introduction

Agricultural procedures may modify the ecolog-
ical balance due to the way the growers till the
land, leading to a population explosion (infesta-
tion) of some inconvenient plants, called weeds
(Shiratsuchi, 2001). Dynamic models indicate
that infestation is not only dependent upon the
weed density but also upon the competitiveness
of the weed species (Park et al., 2003; Firbank
and Watkinson, 1985; Kropff and Spitters, 1991).
More recently, competitive indices and weed rank-
ing were used to quantify the weed competitive-
ness in a soybean field (Hock et al., 2006).

Statistics-based classification methods have
been considered for a long time in many research
areas. These methods are based on probabilities
that a given set of measurements come from ob-
jects belonging to a certain class. Using the per-
formance of a näıve Bayes classifier as a selection
criterion, Granitto et al. (2002) describe exper-
iments that identified a nearly optimal set of 12
seed characteristics to be used as classification pa-
rameters, which include coloration, morphological
and textural features. Considering the seed iden-
tification problem, the work described in Granitto
et al. (2005) compared the performance of a näıve
Bayes classifier versus an artificial neural network-
based (NN) classifier. In this particular experi-
ment the näıve Bayes classifier with an adequately

selected set of classification features outperformed
the NN-based classifier. Similar results were also
obtained by experiments discussed in Marchant
and Onyango (2003) for a task of discrimination
among plant, weed and soil.

The knowledge represented by a Bayesian
classifier is not as understandable as some other
forms of knowledge representation, such as clas-
sification rules. Trying to circumvent this diffi-
culty, a method called BayesRule proposed in Hr-
uschka et al. (2007), uses the concept of maximum
a posteriori (MAP) probability to extract a set of
probabilistic rules that describes the classification
task. In addition, the Markov blanket concept is
applied to reduce the number and the complexity
of classification rules generated by the extraction
process.

The BayesRule method was successfully used
for translating a Bayesian classifier into a set of
linguistic probabilistic rules in the work described
in Bressan et al. (2007). The Bayes classifier was
constructed aiming at the automatic classification
of the degree of competitiveness among weeds and
corn-crop. In this specific weed-crop competitive-
ness classification task, however, the Markov blan-
ket concept was not sufficient to prune the rule set
extracted from the Bayesian network classifier. In
this sense, this paper proposes, implements and
discusses a new pruning strategy to optimize a rule
set created by the BayesRule method. A Bayesian



network classifier built using human expert knowl-
edge (as described in Bressan et al. (2007)) and a
näıve Bayes classifier are used as input to the rule
extraction process and then the proposed pruning
strategy is applied to both rule sets. The results
are analyzed and compared.

The remaining of this paper is organized as
follows. Section 2 describes the basics of Bayesian
networks and näıve Bayes classifiers. Section 3 ini-
tially describes the crop as well as the procedures
used for collecting the data. In the sequence, it
discusses how the BayesRule approach operates.
Section 4 presents the results using both an un-
restricted Bayesian Network classifier and a näıve
Bayes classifier as input to BayesRule. Finally,
Section 5 presents some concluding remarks and
highlights the next steps of this research work.

2 Bayesian Networks and Näıve Bayes
Classifiers

An unrestricted Bayesian network (Cheng et al.,
2002), or simply Bayesian network for short, has a
directed acyclic graph structure. Each node in the
graph corresponds to a discrete random variable
in the knowledge domain. An edge Y −→ X in
the graph describes a parent-child relation, where
Y is the parent and X is the child. All parents of
X define the parent set of X. Each node of the
Bayesian network structure is associated to a con-
ditional probability table that specifies the proba-
bility of each possible state of the node, given each
possible combination of states of its parents. If a
node has no parents, its conditional probability ta-
ble gives the marginal probabilities of the variable
it represents. Thus, a Bayesian network represents
a joint probability distribution over a set of ran-
dom variables and can be used to make inferences
on any node. Instead of encoding a joint probabil-
ity distribution over a set of random variables, a
Bayesian network classifier aims at predicting the
value of a discrete class variable, given the value
of a vector of features variables.

Bayesian Networks can also be used as classi-
fiers; this is done in this work. The learning of an
unrestricted Bayesian network is a two-step pro-
cess. First, the structure of the network is learnt
and then its numerical parameters are learnt. A
Bayesian network, however, is not designed to op-
timize the conditional likelihood of the class given
the other features (Domingos and Pazzani, 1997).
As a consequence, Bayesian networks may not
produce good classification results. Actually, even
the näıve Bayes classifier (Friedman et al., 1997)
can outperform more complex Bayesian networks
classifiers in some domains. For this reason, in
this paper, both, an unrestricted Bayesian net-
work classifier and a näıve Bayes classifier are used
in the conducted experiments, for comparison pur-
poses.

A näıve Bayes is a special case of an unre-
stricted Bayesian network. In particular, it is a
Bayesian network in which the class node has no
parents. Also, each feature has the class node as
its unique parent. The structure of a näıve Bayes
is fixed, that is, it is not necessary to learn a näıve
Bayes structure from data. Consequently, only
the numerical parameters of the model need to be
learnt, thus only information about the features
and their corresponding values are needed to esti-
mate probabilities. The computational time com-
plexity of learning a näıve Bayes network is linear
with respect to the amount of training instances.
The construction is also space efficient, requiring
only the information provided by two-dimensional
tables, in which each entry corresponds to a prob-
ability estimated for a given value of a particu-
lar feature. However, the näıve Bayes method
makes a strong and unrealistic assumption: all
the features are conditionally independent given
the value of the class.

3 Weed-crop Competition Classification

This section initially details how the weed-crop
data was collected, prepared and used in the ex-
periments. Next, it describes the process for con-
structing and evaluating two Bayesian networks,
the unrestricted and the näıve. The second sub-
section focuses on the process of extracting lin-
guistic rules from both previously constructed
Bayesian networks, using the BayesRule method
proposed in Hruschka et al. (2007).

3.1 Collecting and Preparing the Weed-Crop

Data

In the experiments described in this paper, data
from a corn-crop field located in an experimen-
tal farm of the Empresa Brasileira de Pesquisa
Agropecuária (Embrapa), in Sete Lagoas, Minas
Gerais, Brazil is used 1. The field was tilled in a
49ha area in 16 - 20 November 2004 and in 15 -
19 May 2006. The area contains 41 experimental
field parcels 100 meters distant from each other.
The parcels have a rectangular shape measuring 4
meters in the east-west direction and 3 meters in
the north-south direction with 5 corn rows sepa-
rated from each other by 0.7m, starting 0.1m from
the bottom border.

Before the crop development, glifosate
2.4kgha−1 herbicides were applied out of the
parcels. Also, after the crop development, nico-
sulfuron 0.04kgha−1 and atrazine 1kgha−1 were
applied. At the time of the application of herbi-
cides, the parcels were covered.

1Embrapa - Project 55.2004.509.00. Rede de Conheci-
mento em Agricultura de Precisão para Condições do Ser-
rado e dos Campos Gerais.



A weed can be more (or less) competitive
with the crop depending on the type of its leaves.
Therefore, the features for the Bayesian network
classifier were selected as the total density of
weeds per parcel, that is, the number of weeds
per m2, and the corresponding proportions of nar-
row and broadleaf weeds. The class variable is the
weed biomass, which is defined as the amount of
dry material per m2 of the aerial part of the weeds.
The higher the biomass of a weed, the higher its
competitiveness.

To obtain the weed density data per m2 in
each parcel, 4 squares of 0.5m × 0.5m were ran-
domly placed within each parcel and the weed
species of narrow-leaf and broadleaf were collected
and counted. The weed species were separated
into bags and kept in a greenhouse at the temper-
ature of 1050C until their weight become constant.
At this point, the biomass of the species is mea-
sured. The density and the biomass measurements
were collected in each experimental field parcel
in April 2005 and October 2006, in two different
corn-crops. Therefore, 82 data instances were ob-
tained, that is, two data instances for each one of
the 41 parcels. Analyzing the collected data, 11
data instances were identified as outliers and re-
moved; the remaining 71 data instances were con-
sidered for inducing and evaluating two networks,
an unrestricted Bayesian and a näıve Bayes clas-
sifier. In order to evaluate each network a 10-fold
cross validation process was adopted.

3.2 Bayesian Network Modelling

As mentioned in the Introduction, the knowledge
represented by a Bayesian classifier is not easily
understood by human beings. A way of promot-
ing its understandability is by translating it into a
more suitable representation, such as classification
rules. A standard propositional if-then classifica-
tion rule is the simplest and most comprehensive
way to represent classification knowledge and, for
this reason, this type of rule has been adopted by
the BayesRule method. The BayesRule method
(Hruschka et al., 2007) implements the translation
process.

In order to extract probabilistic rules from
both previously built networks, using the
BayesRule approach, the values of all the variables
needed to be discretized. The discretizing process
was conducted by a human expert who proposed
three intervals as shown in Table 1, represented by
the linguistic variables: low (L), medium (M) and
high (H). Figure 1 represents the classifier system
for the weed-crop competitiveness using the rule
set extracted from either (unrestricted or näıve)
Bayesian network.

Figure 2 illustrates the Bayesian network clas-
sifer structure defined by a human expert repre-
sented by the parent-children relationships. The

Table 1: Discretizing intervals for the features.

High Low Medium
Total density [0.60,1] [0,0.20] ]0.20,0.60[

Narrow leaf density [0.60,1] [0,0.20] ]0.20,0.60[
Broadleaf density [0.75,1] [0,0.25] ]0.25,0.75[

Biomass [0.60,1] [0,0.20] ]0.20,0.60[

Figure 1: Biomass inference.

node identified as Biomass is the class node,
from which the competitiveness is inferred. The
Markov blanket of this node is formed by all the
variables of the Bayesian network classifier. Fig-
ure 3 illustrates the näıve Bayes network struc-
ture, in which the class variable has no parents and
the features are conditionally independent, given
the class variable.

Figure 2: The Bayesian network classifier.

As mentioned before, each node of a Bayesian
network classifier has an associated set of con-
ditional probabilities, that depends on its par-
ents. Using a 10-fold cross validation process, 10
Bayesian networks were trained using 10 different
training sets and the extracted rules were evalu-
ated using each of the 10 corresponding testing
sets. The same testing sets were used to evalu-
ate the extracted rules from both networks, unre-
stricted and näıve.

The network structure, as shown in Figure 2,
was constructed based on human knowledge about
this particular domain. To circumvent the difficul-
ties in estimating the conditional probabilities dis-
tribution from data, the Genie 2, a free software,
was used.

2http://genie.sis.pitt.edu



Figure 3: The näıve Bayes classifier.

The BayesRule algorithm for extracting clas-
sification rules from a Bayesian classifier which has
been customized for this particular experiment
is described in Algorithm 1. In the algorithm,
the three variables, JBL, JNL and JTotal are ini-
tialized with value 3, representing the number of
possible values these variables can have, that is,
High, Medium and Low. The variables VBL, VNL

and VTotal are 3-dimensional vectors containing
all possible values these variables can have, again,
High, Medium and Low. RI is a variable used to
control and identify the number of rules that will
be extracted from the Bayesian network classifier.

Algorithm 1 (Procedure BayesRule)

input:

BC: Bayesian Classifier with 4 nodes {Figure 2}

Biomass: Class variable

output: SR {Set of Rules }

begin

1. SR← ∅

2. CMB ←MB(Biomass) {Markov blanket of Bio-

mass}

3. JBL ← 3

4. JNL ← 3

5. JTotal ← 3

6. VBL ← [High, Low, Medium]

7. VNL ← [High, Low, Medium]

8. VTotal ← [High, Low, Medium]

9. RI ← 1 {Rule Index}

10. for k2 := 1 to JBL do

for k3 := 1 to JNL do

for k4 := 1 to JTotal do

begin {create rule antecedent }

propagate rule antecedent throughout BC,

determine Biomass value V alBio and de-

fine rule RRI as:

if DensBL=vBLk2
and DensNL=vNLk3

and DensTotal=vTotalk4
then Biomass =

V alBio

SR← SR ∪ {RRI}; RI ← RI + 1

end

11. SR← remove-irrelevant-rules(SR)

end

4 Bayesian Network and Näıve Bayes
Classifiers Results

BayesRule extracted a set of 27 probabilistic rules
from each Bayes classifier. The number of rules
represents all the combinations of the variables
and their linguistic variables. Each rule has a
value that represents the probability of its class
value, given the values of its antecedent variables.
In order to reduce the number of rules in each
rule set, a pruning strategy was used. Using each
one of 10 cross validation training sets, the rules
with probability less than 0.7 were replaced by a
default rule, which was generated from an a pri-

ori probability of the class variable, obtained from
the numerical parameters of the network. In this
work, the most probable value for the class vari-
able is the Medium linguistic value. Considering
that a 10-fold cross validation strategy was used in
the experiments, only one of the 10 testing set was
chosen to be shown for each classifier; the results
of the nine other testing sets were similar.

Considering the Bayesian rules set extracted
from the unrestricted Bayesian classifier, the re-
sults obtained for the mentioned testing set in-
cluding the accuracy and the corresponding class
probability are shown in Table 2. The rules are
50% in agreement with the testing set, since 3 out
of 6 data instances were correctly classified. Ta-
ble 3 shows the pruned Bayesian rule set, which
presents rules with probability larger than 0.7 as
well as the default rule. Table 4 shows the results
of the testing set using the pruned rule set of Ta-
ble 3. For this testing set, rules 9 and 21 were
replaced by the default rule and the pruned rule
set was 83.33% in agreement with the testing set,
since 5 out of 6 instances were correctly classified.
In this particular modeling, the classification rate
has improved. For all the 10 testing set cases, the
71 data instances were tested. The results indicate
63.39% of agreement, since 45 of 71 testing data
were correctly classified. By replacing the rules
with probability less than 0.7 by the default rule,
this percentage becomes 64.79%, since 46 out of
71 testing instances were correctly classified.

Table 2: Unrestricted Bayesian network testing data

set results.

DensBL DensNL TotalDens Biomass rule Test Prob.
H M M H 9 incorrect 52%
M H M M 21 incorrect 55%
H L M M 6 correct 71%
H L M M 6 correct 71%
H M M M 9 incorrect 52%
M M L L 26 correct 80%

Table 5 shows the results for one testing set
when considering the Bayesian rule set extracted
from the näıve Bayes classifier. The results reveal



Table 3: Pruned unrestricted Bayesian rule set. D:

Default rule

1 If (DensBL is H) and (DensNL is H) and (TotalDens is H)
then Biomass is H (0.72)

4 If (DensBL is H) and (DensNL is L) and (TotalDens is H)
then Biomass is M (1.00)

6 If (DensBL is H) and (DensNL is L) and (TotalDens is M)
then Biomass is M (0.72)

7 If (DensBL is H) and (DensNL is M) and (TotalDens is H)
then Biomass is H (0.83)

11 If (DensBL is L) and (DensNL is H) and (TotalDens is L)
then Biomass is M (1.00)

19 If (DensBL is M) and (DensNL is H) and (TotalDens is H)
then Biomass is L (1.00)

23 If (DensBL is M) and (DensNL is L) and (TotalDens is L)
then Biomass is L (0.79)

24 If (DensBL is M) and (DensNL is L) and (TotalDens is M)
then Biomass is L (0.72)

26 If (DensBL is M) and (DensNL is M) and (TotalDens is L)
then Biomass is L (0.80)

27 If (DensBL is M) and (DensNL is M) and (TotalDens is M)
then Biomass is M (0.80)

D otherwise Biomass is M (1.00)

Table 4: Unrestricted Bayesian network testing data

set results using the pruned rule set. D: Default rule

DensBL DensNL TotalDens Biomass rule Test Prob.
H M M H D incorrect 100%
M H M M D correct 100%
H L M M 6 correct 71%
H L M M 6 correct 71%
H M M M D correct 100%
M M L L 26 correct 80%

that the rules are 50% in agreement with the test-
ing set, since 3 out of 6 instances were correctly
classified. Table 6 shows the pruned Bayesian rule
set and Table 7 shows the results of the testing
set using the pruned rule set. For this testing set,
rules 3, 13, 25 and 27 were replaced by the default
rule and the pruned rule set was 66.66% in agree-
ment with the testing set, since 4 out of 6 data
instances were correctly classified. In this par-
ticular modelling, the classification has also im-
proved. For all the 10 testing set cases, the 71
data instances were tested. The results using the
unpruned rule set indicate 57.75% of agreement,
since 41 of 71 testing data were correctly classified.
By replacing the rules with probability less than
0.7 by the default rule, this percentage increases to
61.97%, since 44 out of 71 testing instances were
correctly classified.

5 Conclusions

In this work two Bayesian weed-crop competitive-
ness models, based on weed biomass, are con-
structed aiming at extracting standard proposi-
tional if-then classification rules and a rule prun-
ing strategy is proposed. The first model was

Table 5: Näıve Bayes testing data set results.

DensBL DensNL TotalDens Biomass rule Test Prob.
H M H H 3 incorrect 62%
L H L M 13 correct 52%
M M M M 27 correct 48%
M H M M 25 incorrect 50%
M M M M 27 correct 48%
H L M L 20 incorrect 91%

Table 6: Pruned näıve Bayes rule set. D: Default rule

2 If (DensBL is H) and (DensNL is L) and (DensdTotal is H)
then Biomass is M (0.80)

5 If (DensBL is L) and (DensNL is L) and (DensdTotal is H)
then Biomass is M (0.73)

18 If(DensBL is M) and (DensNL is M) and (DensdTotal is L)
then Biomass is L (0.71)

19 If (DensBL is H) and (DensNL is H) and (TotalDens is M)
then Biomass is M (0.76)

20 If (DensBL is H) and (DensNL is L) and (TotalDens is M)
then Biomass is M (0.91)

21 If (DensBL is H) and (DensNL is M) and (TotalDens is M)
then Biomass is M (0.78)

23 If (DensBL is L) and (DensNL is L) and (TotalDens is M)
then Biomass is M (0.85)

D otherwise Biomass is M (1.00)

built using the concept of unrestricted Bayesian
network classifier and the second is a traditional
näıve Bayes classifier. The numeric parameters of
both Bayesian models were learned from the 71
data instances collected from a corn-crop.

A hybrid approach, implemented by the
BayesRule method, which articulates Bayes and
linguistic rules was used to improve the model un-
derstandability, by extracting classification rules
from each model. After the extraction process,
the proposed rule pruning strategy was applied
and a pruned Bayesian rule set was obtained (for
each model) containing only rules with probabil-
ity larger than 70%. By using the pruned rule
set in both classifiers, the classification accuracy
of the competitiveness, inferred from the weed
biomass, increased and the number of rules de-
creased. Moreover, the proposed pruning strat-
egy is promising since the resulting Bayes rule set
translates the specialist knowledge.

In addition, the results reveal that the unre-
stricted Bayesian classifier (induced with a human
expert help) yields a higher agreement percentage
than the näıve Bayes classifier. The strong and
unrealistic assumption (that all the features are
independent given the class) which is an intrin-
sic aspect of any näıve Bayes classifier may have
contributed to this behavior.

Although the measurements refer to a partic-
ular domain, it is important to mention that the
results are specific to a particular crop field, sub-
ject to the conditions described in Subsection 2.1.
Further work includes the use of extensive simu-



Table 7: Näıve Bayes testing data set results using

the pruned rule set. D: Default rule

DensBL DensNL TotalDens Biomass rule Test Prob.
H M H H D incorrect 62%
L H L M D correct 100%
M M M M D correct 100%
M H M M D correct 100%
M M M M D correct 100%
H L M L 20 incorrect 91%

lations and experiments trying to generalize the
obtained results. It is intended also to investigate
the proposed pruning strategy in other domains
to confirm its relevance.

Acknowledgements

This work was partially supported by the Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES) under the Programa Nacional
de Cooperação Acadêmica (PROCAD), the Con-
selho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq) and Fundação de Amparo à
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